2023-05-18 02:29:43 | 七七网
即使是复习过的内容仍须定期巩固,但是复习的次数应随时间的增长而逐步减小,间隔也可以逐渐拉长。从内容上看,每课知识即时回顾,每单元进行知识梳理,每章节进行知识归纳总结,必须把相关知识串联在一起,形成知识网络,达到对知识和方法的整体把握。
第一部分集合
(1)含n个元素的集合的子集数为2^n,真子集数为2^n—1;非空真子集的数为2^n—2;
(2)注意:讨论的时候不要遗忘了的情况。
第二部分函数与导数
1、映射:注意①第一个集合中的元素必须有象;②一对一,或多对一。
2、函数值域的求法:①分析法;②配方法;③判别式法;④利用函数单调性;⑤换元法;⑥利用均值不等式;⑦利用数形结合或几何意义(斜率、距离、绝对值的意义等);⑧利用函数有界性(、、等);⑨导数法
3、复合函数的有关问题
(1)复合函数定义域求法:
①若f(x)的定义域为〔a,b〕,则复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出
②若f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域。
(2)复合函数单调性的判定:
①首先将原函数分解为基本函数:内函数与外函数;
②分别研究内、外函数在各自定义域内的单调性;
③根据“同性则增,异性则减”来判断原函数在其定义域内的单调性。
注意:外函数的定义域是内函数的值域。
4、分段函数:值域(最值)、单调性、图象等问题,先分段解决,再下结论。七七网
5、函数的奇偶性
⑴函数的定义域关于原点对称是函数具有奇偶性的必要条件;
⑵是奇函数;
⑶是偶函数;
⑷奇函数在原点有定义,则;
⑸在关于原点对称的单调区间内:奇函数有相同的单调性,偶函数有相反的单调性;
(6)若所给函数的解析式较为复杂,应先等价变形,再判断其奇偶性;
1、对于函数f(x),如果对于定义域内任意一个x,都有f(—x)=—f(x),那么f(x)为奇函数;
2、对于函数f(x),如果对于定义域内任意一个x,都有f(—x)=f(x),那么f(x)为偶函数;
3、一般地,对于函数y=f(x),定义域内每一个自变量x,都有f(a+x)=2b—f(a—x),则y=f(x)的图象关于点(a,b)成中心对称;
4、一般地,对于函数y=f(x),定义域内每一个自变量x都有f(a+x)=f(a—x),则它的图象关于x=a成轴对称。
5、函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;
6、由函数奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则—x也一定是定义域内的一个自变量(即定义域关于原点对称)。
1、圆柱体:
表面积:2πRr+2πRh体积:πR2h(R为圆柱体上下底圆半径,h为圆柱体高)
2、圆锥体:
表面积:πR2+πR[(h3+R2)的平方根]体积:πR2h/3(r为圆锥体低圆半径,h为其高,
3、正方体
a-边长,S=6a2,V=a3
4、长方体
a-长,b-宽,c-高S=2(ab+ac+bc)V=abc
5、棱柱
S-底面积h-高V=Sh
6、棱锥
S-底面积h-高V=Sh/3
7、棱台
S1和S2-上、下底面积h-高V=h[S1+S2+(S1S2)^1/2]/3
8、拟柱体
S1-上底面积,S2-下底面积,S0-中截面积
h-高,V=h(S1+S2+4S0)/6
9、圆柱
r-底半径,h-高,C—底面周长
S底—底面积,S侧—侧面积,S表—表面积C=2πr
S底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h
10、空心圆柱
R-外圆半径,r-内圆半径h-高V=πh(R^2-r^2)
11、直圆锥
r-底半径h-高V=πr^2h/3
12、圆台
r-上底半径,R-下底半径,h-高V=πh(R2+Rr+r2)/3
13、球
r-半径d-直径V=4/3πr^3=πd^3/6
14、球缺
h-球缺高,r-球半径,a-球缺底半径V=πh(3a2+h3)/6=πh3(3r-h)/3
单词是学习英语最重要的一环,因为背好单词你才有可能学好英语。有同学不喜欢背单词,因为他会觉得背单词好麻烦,为什么要背单词,一旦对单词出现逆反情绪的话,你的单词估计也就背不好了,注意自己一定不要出现这种情绪。要让自己从心里爱上单词,这样背单词才有可能背好。
1、学习语法
学习语法对于想要学好英语也是很重要的,什么主谓宾补状定,什么是间接宾语,什么是系动词,这些对于语法学习来说都是很重要的。这些是学习语法的基础,也是英语写作文重要的材料。
2、抄写好词好句
平时读报,或者做题的时候,发现有好的句子好的词汇,你要抄下来,长期下来,你的作文会有提高的,需要说明的是,这个提高过程可能很缓慢,但是最后能收到很好的效果,对语法的熟练掌握和积累了许多较高级的词汇,句型,句子。在你的语法达到基本不会出错的程度上,作文便应该以词汇取胜,因为在这个层次上,大家的语法都差不多,没什么变化,唯一有变化的就是你的词汇!词汇是很重要的。
一、背诵英语文章是学习英语的好方法
背诵课文是最简单有效的记忆单词、语法、培养语感的方法了、当你能把整篇文章背诵下来,文章中的单词也刻在了你的脑海了,结合上下文的语境,记忆时间会更长久,而且语法中的时态、固定搭配都能记住,在脑海里形成印象再遇到时,很容易参考。说到语感,背得多了,自然而然就能知道什么时候该用什么词、时态用法,英语也能更流畅表达。
二、词汇是学习英语的方法基石
其实背单词是英语学习中不可避免的。那如何才能科学地背单词呢?
我们都知道有个艾宾浩斯记忆曲线,根据艾宾浩斯记忆曲线,短时记忆往往比长时记忆更容易遗忘。于是,我们在背单词时就要有效地利用这个曲线。比如说,我们要记忆20个单词。那么,首先将单词分为5个一组,共A、B、C、D四组。开始从A组背起,先背A1,然后是A2,背会A2后,再回顾A1;之后背A3,再回顾A2,也就是说,背会下一个单词,要回头来巩固上一个。
A组背完后,把A组5个单词巩固一遍,然后开始用同样的方法记忆B组。组与组之间同样采取重复记忆的办法,即背会B组后巩固A组、背会C组后巩固B组,以此类推。四组都背完后,再总体回顾,用笔标出记忆不深刻的单词,多背几遍。
此外,的记忆单词的时间是每天晚上记忆一遍,第二天早上再复习一遍。
高三英语知识点总结大全英语句式整理归纳平时读报,或者做题的时候,发现有好的句子好的词汇,你要抄下来,长期下来,你的作文会有提高的,需要说明的是,这个提高过程可能很缓慢,但是最后能收到很好的效果,对语法的熟练掌握和积累了许多较高级的词汇,句型,句子。高三英语句式知识点总结1.devotes…todoing奉于2.fightagainst对抗,反对,与……作斗争3.selflessly无私地4.b
高三数学知识点总结大全数学公式整理归纳有些数学题的解题方法,也可以用表格化难为易、驭繁为简。例如,用列表法解乘积或分式不等式,解含绝对值符号的方程或不等式,计算多项式的乘法,求整系数方程的有理根等等,都是很好的方法,这种记忆法在复习中尤其应该提倡。高三数学公式知识点三倍角公式sin3α=4sinα·sin(π/3+α)sin(π/3-α)cos3α=4cosα·cos(π/3+α)cos(π/
高三英语知识点总结大全英语句式整理归纳平时读报,或者做题的时候,发现有好的句子好的词汇,你要抄下来,长期下来,你的作文会有提高的,需要说明的是,这个提高过程可能很缓慢,但是最后能收到很好的效果,对语法的熟练掌握和积累了许多较高级的词汇,句型,句子。高三英语句式知识点总结1.devotes…todoing奉于2.fightagainst对抗,反对,与……作斗争3.selflessly无私地4.b
高三英语知识点总结大全英语句式整理归纳平时读报,或者做题的时候,发现有好的句子好的词汇,你要抄下来,长期下来,你的作文会有提高的,需要说明的是,这个提高过程可能很缓慢,但是最后能收到很好的效果,对语法的熟练掌握和积累了许多较高级的词汇,句型,句子。高三英语句式知识点总结1.devotes…todoing奉于2.fightagainst对抗,反对,与……作斗争3.selflessly无私地4.b
高三数学知识点总结大全数学公式整理归纳有些数学题的解题方法,也可以用表格化难为易、驭繁为简。例如,用列表法解乘积或分式不等式,解含绝对值符号的方程或不等式,计算多项式的乘法,求整系数方程的有理根等等,都是很好的方法,这种记忆法在复习中尤其应该提倡。高三数学公式知识点三倍角公式sin3α=4sinα·sin(π/3+α)sin(π/3-α)cos3α=4cosα·cos(π/3+α)cos(π/
高三文综学习方法高三文综学习方法?熟悉课本,尤其是历史,在高考历史中得高分的学生,历史书往往因为反复阅读和勾画,纸都快破了。因此高三复习中看书是非常重要的,高考题的命题都是立足书本,可能题设和材料不同,但是考察的知识内容一定都是课本上的。高三文综学习方法是什么1、熟悉课本尤其是历史,在高考历史中得高分的学生,历史书往往因为反复阅读和勾画,纸都快破了。因此高三复习中看书是非常重要的,高考题的命题
高三英语知识点总结大全英语句式整理归纳平时读报,或者做题的时候,发现有好的句子好的词汇,你要抄下来,长期下来,你的作文会有提高的,需要说明的是,这个提高过程可能很缓慢,但是最后能收到很好的效果,对语法的熟练掌握和积累了许多较高级的词汇,句型,句子。高三英语句式知识点总结1.devotes…todoing奉于2.fightagainst对抗,反对,与……作斗争3.selflessly无私地4.b
高三数学知识点总结大全数学公式整理归纳有些数学题的解题方法,也可以用表格化难为易、驭繁为简。例如,用列表法解乘积或分式不等式,解含绝对值符号的方程或不等式,计算多项式的乘法,求整系数方程的有理根等等,都是很好的方法,这种记忆法在复习中尤其应该提倡。高三数学公式知识点三倍角公式sin3α=4sinα·sin(π/3+α)sin(π/3-α)cos3α=4cosα·cos(π/3+α)cos(π/
2023-11-14 07:29:11
2023-05-06 13:26:37
2023-05-06 00:36:34
2023-06-12 13:14:56
2023-03-05 23:24:02
2023-06-27 03:54:41